
Design of High Performance Pattern Matching Engine
Through Compact Deterministic Finite Automata

Piti Piyachon and Yan Luo
Dept. of Electrical and Computer Engineering, University of Massachusetts Lowell

Lowell, MA, USA
piti_piyachon@student.uml.edu, yan_luo@uml.edu

ABSTRACT
Pattern matching relies on deterministic finite automata (DFA)
to search for predefined patterns. While a bit-DFA method
is recently proposed to exploit the parallelism in pattern
matching, we identify its limitations and present two schemes,
Label Translation Table (LTT) and CAM-based Lookup Table
(CLT), to reduce the DFA memory size by 85%, and sim-
plify the design by requiring only four processing elements
of bit-DFA instead of thousands.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
microprocessor/microcomputer applications; C.4 [Perform-
ance of Systems]: design studies; C.1.4 [Parallel Archi-
tectures]: Distributed architectures

General Terms
Algorithms, Design, Performance, Security

Keywords
Pattern Matching, Deterministic Finite Automata, Content
Addressable Memory

1. INTRODUCTION
Pattern matching is a critical task for numerous applica-

tions such as network monitoring, network intrusion detec-
tion (NID), virus detection, etc. The matching procedure
searches for predefined patterns in data stream. Growing of
pattern sets (e.g. Snort NID) makes matching become one
of the most challenging tasks.

Pattern matching usually relies on a deterministic finite
automaton (DFA) stored in memory to provide determinis-
tic performance and flexibility to update pattern sets. The
size of a DFA is normally in the order of tens of megabytes
for a realistic pattern set (e.g. Snort [8]), thus a DFA can-
not be easily fitted in on-chip memory to achieve high speed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8-13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...$5.00.

Recently, two bit-DFA models for pattern matching are pro-
posed to reduce the size of a DFA, and exploit the parallelism
with parallel processing resources in ASIC and FPGA [7, 11].

In this paper, we investigate the key issues related to bit-
DFA based pattern matching, and give solutions. The bit-
DFA method has not been realized under current technology
due to its requirement of thousands of processing elements
and demanding memory usage. We attack the root cause of
the issues by eliminating bit-vectors [10] used for identifying
patterns in bit-DFA. Specifically, we propose two schemes,
Label Translation Table (LTT) and CAM-based Lookup Ta-
ble (CLT), to identify the matched patterns. Our experi-
ment results show that the memory required to implemented
bit-DFA are reduced by 85%, making them possible to fit in
precious on-chip memory space. The required processing
elements are reduced from thousands to four.

The rest of this paper is organized as follows. A classical
pattern matching algorithm is introduced in Section 2 along
with the bit-DFA method. Section 3 discusses the problems
of the bit-DFA pattern matching. We propose our solutions
in Section 4, and an architecture supporting the solutions
in Section 6. Our experimental results are presented in Sec-
tion 7. Related works are discussed in Section 8. Finally,
the paper is concluded in Section 9.

2. BACKGROUND
Aho-Corasick (AC) algorithm [1] is a classical pattern

searching algorithm that builds DFA. Fig. 1 shows a DFA
diagram for an example set of patterns {his, her, man, lady}.
Each double-circle node is an output state announcing the
match of a pattern. A directed edge shows the state transi-
tion when matching a byte. The pattern matching procedure
scans an input data stream byte by byte, and migrates from
the start state (state 0) until all bytes are taken. During
the migration, reaching an output state indicates a pattern
match in the input data stream.

0

4

3

h

i

s

1

5

r

e

8

p0: his
p1: her
p2: man
p3: lady

p0

p1

(Not all transitions shown)

2

m

6

7

a

l

9

n

a

d

y

p2 p3

10

11

12

Figure 1: An example of a DFA diagram

852

46.2

Different granularity of parallelism in pattern matching
was explored in [6] and [10]. Matching a byte from the input
stream at a time can be turned to matching four double-
bits in parallel. The DFA example in Fig. 1 becomes four
bit-DFA, which are shown in Fig. 2. The construction of
bit-DFA also uses the classical AC algorithm although the
granularity is now at bit-level. For example, the bit 1 and
0 of ASCII characters ‘h’, ‘i’ and ‘s’ are ‘00’, ‘01’ and ‘11’,
respectively, thus the bit-1 0 sequence of“his” is “00, 01, 11”.
Similarly the bit-1 0 sequences of“her”,“man”and“lady”are
“00, 01, 10”, “01, 01, 10”, “00, 01, 00, 01”, respectively. These
four bit-1 0 sequences are used to construct the bit-DFA 0
shown in Fig. 2. We can construct other bit-DFA in the
same way. When an input byte comes in, these four double-
bits will be extracted from the byte, and used to search on
the corresponding bit-DFA in parallel. A match is claimed
iff all bit-DFA find the same match.

(Show only relevant transitions)

0

3

10

1

2

5

p0: his : 10, 10, 11
p1: her : 10, 10, 11
p2: man: 10, 10, 10
p3: lady: 10, 10, 10, 11

4

10

10

11

p0, p1 11

p2p3

bit-DFA 3

0
01

1

2

7

p0: his : 01, 01, 01
p1: her : 01, 01, 01
p2: man: 01, 01, 01
p3: lady: 01, 01, 01, 01

4
0101

01

p0, p1, p2

p3

p0: his : 10, 10, 00
p1: her : 10, 01, 00
p2: man: 11, 00, 11
p3: lady: 11, 00, 01,10

0

43

1

5

8

2

6

7

9

10

p0

p1

p2

p3

11

10

10

00
01

00

00

11
01

10

bit-DFA 1

bit-DFA 2
0

1

4

7
2

5

6

8

p0: his : 00, 01, 11
p1: her : 00, 01, 10
p2: man: 01, 01, 10
p3: lady: 00, 01, 00, 01

00

01

11

10

01

01

10

00

p1

p2

bit-DFA 0

01

3

9

p0

p3

Figure 2: 4 bit-DFA are equivalent to the DFA in Fig. 1

The advantage of the bit-DFA method is the reduction of
the alphabet size from 256 characters to 16, 4, or 2, depend-
ing on the amount of bits examined at a time. Hence, the
amount of possible next states is less, resulting less memory
needed to store next state pointers. It has been observed
that the alphabet size of 4 is optimum [6, 11]. Thus for
the rest of this paper, we use the alphabet size of 4 in our
analysis and design.

3. MOTIVATION
Despite of tremendously decreasing the memory require-

ment, pattern matching with the bit-DFA method has not
been deployed due to several reasons.

Implementation Issues: The bit-DFA method requires
thousands of processing elements to implement thousands [7,
11] of bit-DFA, which is not practical under today’s silicon
technology. FPGA based implementation is limited by rout-
ing interconnections for this magnitude of bit-DFA. Jung et
al [4] and Tan et al [11] show that the bit-DFA method can
achieve only around 1 GB/s on FPGAs. Today’s multi-core
technology has not reached hundreds of cores yet. ASIC
seems a good candidate for realizing bit-DFA, however, fine
grain of thousand cores consumes both area and power due
to duplication of processing and control circuitry [11].

Memory Wastage: Since introduced in 2005 [10], the

bit-DFA method has not been put into its limitation to give
optimal memory efficiency. This is because the method aims
to compress DFA memory requirement by reducing alphabet
size rather than exploiting the nature of shared states.

Shared State Phenomenon happens when a DFA is con-
structed from two patterns (or more) that have the same
prefix. These patterns share some states that are not shared
if each DFA is separately constructed. For example, both
“his” and “her” have ‘h’ as their prefix. In Fig. 1, the pat-
tern “his” individually has 4 states, including a start state,
and “her” also has 4 states. When they are built together
in the same DFA, they need only 6 states. The state 0 and
state 1 are the shared states. A bit-DFA also has sharing
opportunities. For the bit-DFA 3 (Fig. 2), shows that the
bit-7 6 sequences of patterns “his”, “her” and “man” are the
same. Thus, these three patterns share every single state.
In fact, the chances of shared prefixes are much more in
bit-DFA than normal DFA, as shown in Table 1. The first
column in the table depicts the case where we construct
a separate DFA for each pattern while the second column
where constructing one DFA for a whole set of patterns.
Existing approaches [7, 10] that partition a set of patterns
into many subsets lower the amount of shared states, thus
wasting memory space.

one one bit bit bit bit
pattern normal DFA DFA DFA DFA

per DFA DFA 3 2 1 0

states 97427 67342 27979 42366 50341 53807
states
char. 106% 74% 31% 46% 55% 59%

Table 1: Shared State Phenomena for the Snort’s patterns
(Sept’07) which has 5892 patterns, and 91575 characters.

(Show only relevant transitions)

3
10

4

5

p0: his : 10, 10, 11
p1: her : 10, 10, 11
p2: man: 10, 10, 10
p3: lady: 10, 10, 10, 11

2

10

10

11

p0, p1
11

p2p3

bit-DFA 3

2
01

3

4

p0: his : 01, 01, 01
p1: her : 01, 01, 01
p2: man: 01, 01, 01
p3: lady: 01, 01, 01, 01

01
01

01

p0, p1, p2

p3

p0: his : 10, 10, 00
p1: her : 10, 01, 00
p2: man: 11, 00, 11
p3: lady: 11, 00, 01,10

4

7

5

2

3

6

8

9

p0

p1

p2

p3

11

10

10

00
01

00

00

11
01

10

4

5

2

3
6

7

8

9
p0

p0: his : 00, 01, 11
p1: her : 00, 01, 10
p2: man: 01, 01, 10
p3: lady: 00, 01, 00, 01

00

01

11

10

01

01

10

00

p1

p2

bit-DFA 1

bit-DFA 2 bit-DFA 0

100

1

0
1

0

1

0

1p3
01

Figure 3: The result of State Relabeling from Fig. 2

These above two problems grow from the same root: out-
put states are shared by patterns in a bit-DFA. Our following
explanation will make this argument clear.

1. The bit-DFA method introduces opportunities of shar-
ing output states among patterns, which is not the case
for any normal DFA method. The bit-DFA 3 (Fig. 2)
shows an example where the (output) state 4 is shared
by three patterns: p0, p1 and p2. This creates a prob-
lem; how to identify an output state matches which
pattern. In [7] and [10], bit-vectors are used to identify

853

the matched patterns, where each bit in a bit-vector
represents a corresponding pattern. In this case, the
bit-vector of the state 4 is “1110”. For the match of p1,
the bit-DFA 3, 2, 1 and 0 must reach their own states
4, 3, 5 and 4, respectively. The bit-vectors of these
states are “1110”, “1100”, “0100”, and “0100”, respec-
tively. The result of ANDing these four bit-vectors is
“0100”, and only the bit identifier of p1 asserts.

2. The length of a bit-vector grows with the amount of
patterns, so does its required memory space. Snort’s
pattern set (Sept’07) contains 5892 patterns, which
dictates the bit-vector length as 5892 bits and the over-
all memory needed over 150 MB (Table 2). Results
from [7] shows the memory spent on storing bit-vectors
is 78% of the total memory.

3. The bit-vector size can be reduced by dividing the pat-
tern set into subsets. Both Piyachon et al [7] and Tan
et al [10] adopted this approach to perform pattern
matching with thousands of bit-DFA. This finally leads
to the aforementioned two issues.

We are motivated to address these issues while still tak-
ing advantage of the reduced alphabet size in bit-DFA. Al-
though the sharing of output states is the nature of bit-DFA,
we attempt to eliminate the storage needed for bit-vectors.
In particular, we propose to use two schemes, Label Trans-
lation Table (LTT) and CAM-based Lookup Table (CLT),
to determine the final matching pattern, instead of using
bit-vectors. In this way we can reduce the size of memory
required to store bit-DFA so that the bit-DFA and related
tables can reside in limited on-chip memory space to im-
prove pattern matching speed. We next describe LTT and
CLT.

patterns/subset 8 16 32 64 128 256 5852

State Trans Tb 7.4 6.3 6.6 6.9 7.0 7.0 1.6
bit-vectors 1.5 2.5 4.8 9.2 17.3 32.1 150.1

Total 8.9 8.8 11.4 16.1 24.3 39.1 151.7

Table 2: Memory usages (MB) of the bit-DFA model of
Tan et al with Snort (Sept’07)

4. THE DESIGN

4.1 Common Output States
We develop our schemes based on observations on bit-

DFA. Bit-DFA states are identified with unique numbers,
and without loss of generality, output states are numbered
lower than non-output states. This can be done with a re-
labeling algorithm that we will explain in Section 4.2.

A pattern set Π contains of patterns p0, p1, ..., pK , i.e.,
Π = {∀pi | i = 0, 1, 2, ..., K} when K is the amount of
patterns. We denote a state as ξd,i where d is the bit-DFA
number (0 through 3 in Fig. 3), and i is the state label.
A state ξd,i is an output state iff it matches a pattern set,
πd,i ⊂ Π. (A state is not an output state iff πd,i = ∅.) For
example in Fig. 3, the state 0 in the bit-DFA 3 matches
patterns p0, p1 and p2. That is, π3,0 = {p0, p1, p2}, and
π3,0 ⊂ Π. The state 4 does not match any pattern, i.e.,
π3,4 = ∅. Thus, the state 4 is not an output state.

There are two types of output states: common one and
unique one. When we have 4 bit-DFA (0 � d � 3), a state
πd,i is a common one iff πd,i �= ∅ and

π3,i ∩ π2,i ∩ π1,i ∩ π0,i �= ∅
A state is a unique one iff πd,i �= ∅, and it is not common.

Theorem 1: The cardinality of π3,i ∩ π2,i ∩ π1,i ∩ π0,i is
one for a common output state ξd,i.

Proof: In the bit-DFA method, the set intersection oper-
ation π0,i∩π1,i∩π2,i∩π3,i is equivalent to the final AND op-
eration on bit-vectors, which determines if any patterns are
matched when all bit-DFA reach output states whose label
is i. The definition of a common output state means the bit-
DFA match some patterns of length L, which is the amount
of transitions from the start state to state ξd,i. Considering
all patterns of the same length are unique, the amount of
patterns matched is one. Therefore the cardinality of the
intersection is one.

In Fig.3, the state ξ3,0 is a common output state and,
π0,0∩π1,0∩π2,0∩π3,0 = {p0}. From the definition of common
output states, it is obvious that all ξd,0, where 0 � d � 3, are
common output states, so only the state label is significant
for common states. Similarly, all ξd,1 are common output
states, and the intersection set is {p3}. All other output
states are unique ones. We design two schemes to determine
the matched patterns: LTT for common output states, and
CLT for unique ones. Before explaining LTT and CLT, we
next describe algorithms to relabel states.

4.2 State Relabeling Algorithm
The states in bit-DFA are labeled with unique numbers

that are determined by Aho-Corasick algorithm. We relabel
them with new labels so that: (1) every the output state
is numbered lower than non-output states, and (2) every
output state that matches the same pattern has the same
label. The first goal is to cluster output states into lower
label ranges, and the second goal is to bring out common
output states.

Algorithm 1 Relabeling Common Output States

1: Let ν be the new label. And it begins with ν = 0.
2: Go over each bit-DFA to search for states ξ3,a, ξ2,b, ξ1,c,

ξ0,d that π3,a ∩ π2,b ∩ π1,c ∩ π0,d �= ∅
3: Relabel these states with the same new label ν, and save

them in a different data structure. That is, ξ3,a,ν , ξ2,b,ν ,
ξ1,c,ν , ξ0,d,ν . The old labels (a, b, c, d) are still preserved
as references to the pre-relabeled (old) bit-DFA.

4: Store the result of π3,a ∩ π2,b ∩ π1,c ∩ π0,d in LTT [ν],
i.e, the address ν in LTT. (For example, π3,4,0 ∩ π2,3,0 ∩
π1,3,0 ∩π0,3,0 = {p0}. We refer to the state 4, 3, 3 and 3
in the bit-DFA 3, 2, 1 and 0 in Fig. 2. These states are
relabeled as the state 0 in Fig. 3.)

5: ν ← ν + 1
6: Continue repeating the step 1 to 5 until all states are

exhausted.

The relabeling are outlined in the algorithms. We begin
with finding and relabeling common output states in Algo-
rithm 1. So, new labels of common ones will be numbered
lower than non-output states. Note that only common out-
put states are relabeled by checking their intersection opera-
tion π3,i∩π2,i∩π1,i∩π0,i �= ∅. In this algorithm, we keep also
adding data footprints to LTT. The algorithm will continue

854

until it cannot find any common output states. Algorithm 2
begins with relabeling unique output states in each bit-DFA,
followed by relabeling non-output states until all states are
labeled. In Algorithm 2, NbitDFA is the amount of bit-DFA
(4 in our case).

Algorithm 2 Relabeling Unique Output States, and Non-
Output States

Require: The new label ν from Algorithm 1
1: After finishing Algorithm 1, the new label ν is the next

value for the rest states. (For example, ν is ‘2’ in Fig 3.)
2: tmp← ν
3: for d← 0 to NbitDFA do
4: Relabel output states with tmp. Then the new state

will be ξd,i,tmp when i is the old label. And keep
increasing tmp, i.e, tmp ← tmp + 1, until all output
states are exhausted.

5: Relabel non-output states with tmp. Then the new
state will be ξd,i,tmp when i is the old label. And
keep increasing tmp, i.e, tmp← tmp+1 until all non-
output states are exhausted.

6: end for

4.3 Label Translation Table (LTT)
We construct a LTT to translate state labels to pattern

labels (instead of using a bit-vector). A state label is used
as an address number that points to a row in the table, as
shown in Fig. 4. The LTT stores the pattern label of the
intersection set at a location pointed by the state label of
a common output state. An example table shows in Fig. 4,
the address ‘0’ and ‘1’ store the pattern label of p0 and
p3, respectively. This scheme is based on Theorem 1. The
match of p0 occurs when all bit-DFA in Fig. 3 reach their
own state 0 at the same time. The state 0 label which is ‘0’
is the address pointing to the LTT.

0
3

bit-DFA Label
Translation

Table

(address)
0
1

output
state label

2
01

3

4

01

01

01

p0, p1, p2

p3

0
1

Figure 4: Label Translation Table mechanism for Fig. 3

4.4 CAM-based Lookup Table (CLT)
The identifiers of unique output states can form unique

sequences that can be used to identify matched patterns. In
Fig. 3, when the bit-DFA 3 reaches its output state 0, and
the bit-DFA 2, 1 and 0 reach the states 0, 2 and 2, respec-
tively, a match on the pattern p1 occurs. The state labels
‘0’, ‘0’, ‘2’ and ‘2’ are different among bit-DFA, however, the
concatenation of these numbers,“0,0,2,2”, is unique, thus can
be used to identify a matched pattern.

The concatenated state label is a unique number that is
stored in a Content Addressable Memory (CAM). The CAM
will give the address of a stored datum iff the input equals
to the datum. Thus, we can use a CAM to issue the ad-
dress that points to a lookup table, which contains the cor-
responding pattern label. Fig. 5 shows an example of a CLT.

The data in the CAM are “0,0,2,2” and “0,2,3,3” at the ad-
dress ‘0’ and ‘1’, respectively. The first one, “0,0,2,2”, is the
concatenated state label from the bit-DFA 3, 2, 1 and 0,
respectively, for the match of pattern p1. And the second
one, “0,2,3,3”, is the concatenated state label for the match
of p2.

0 0 2 2
0 2 3 3

0
1

1
2

CAM

Lookup
Table

ad
dr

es
s

0
1

2
01

3

4

1

0101

01

p0, p1, p2

p3

p0,

p1

p1

p1

output state Labels

bit-DFA

0

0

2

2

Figure 5: CAM-based Lookup Table mechanism

4.5 Arbiter Mechanism
Arbiter (Fig. 6)

The arbiter operates under the following principles.

• A match occurs only when all bit-DFA reach their own
output states at the same time. Thus, we access either
LTT or CLT only when all bit-DFA reach their own
output states at the same time.

• Since LTT is for common output states, and CLT for
unique ones, we use either one, but not both.

Based upon these two principles, the arbiter can be engi-
neered as Fig.6.

2
01

3

4

1

0
0101

01

p0, p1, p2

p3

0
p0, p1

2p1

2p1

=

A
N
D

AND

NOT

CLT
enable

Arbiter

AND

LTT
enable

output state detector results

output state labels
State Label Comparator

bit-DFA

Figure 6: Arbiter mechanism

Output State Detector (Fig. 10)
Each bit-DFA uses an output state detector to distinguish
output states from non-output ones. After relabeling states,
labels of output states are less than non-output ones. There-
fore, the detector is simply a “less-than” comparator. Note
that the results of the detectors (from all bit-DFA) must be
ANDed together to check whether all bit-DFA reach their
own output states at the same time by the 4-input AND
gate in Fig. 6.

State Label Comparator (Fig. 6)
We use LTT only when the current states (from all bit-DFA)
are equal at the same time, and when these current states

855

are output states. The first checking can be done with a
4-input “equal” comparator. The second one can be done by
the output state detectors.

5. MEMORY REQUIREMENTS
In this section, we form formula to calculate the memory

usage by LTT and CLT.
Label Translation Table

In Fig. 4, The memory size of the table is proportional to its
rows and width. The amount of rows equals to the minimal
amount of output states, NOutSt,Min. Fig. 3 shows that the
amount of output states in the bit-DFA 3, 2, 1 and 0 are 2,
3, 4 and 4, respectively. Hence, NOutSt,Min is 2. The width
is �log2(K)� where K is the amount of patterns. Hence, the
memory required by LTT is:

MLTT = NOutSt,Min · �log2(K)� (1)

CAM-based Lookup Table
The memory size of the CAM is proportional to its rows and
width. The amount of rows equals to the amount of patterns
that cannot be performed by using LTT scheme. And the
width is �log2(NOutSt,Max)�. When NbitDFA is the amount
of bit-DFA (in our case, NbitDFA = 4), the CAM memory
size is:

MCAM = (K −NOutSt,Min) ·NbitDFA · �log2(NOutSt,Max)�
(2)

For the symmetrical design, we use the maximal output-
states, NOutSt,Max, in Equation 2. For example (Fig. 3),
NOutSt,Max = 4 states.

The memory required by the CAM’s Lookup Table is pro-
portional to its rows and width. The width equals to the
width of the LTT. Hence, the lookup table memory size is:

MLookup = (K −NOutSt,Min) · �log2(K)� (3)

For Snort (Sept’07), K = 5852 patterns, NOutSt,Max =
4609 states. NOutSt,Min = 2094 states as in Table 3.

bit-DFA 3 2 1 0

output states 2094 3932 4520 4609
total states 27979 42366 50341 53807
% output st 7.48% 9.28% 8.98% 8.57%

Table 3: The amount of output states and total
states in each bit-DFA from Snort’s pattern set (Sept’07).
NOutSt,Max = 4609 states. NOutSt,Min = 2094.

6. ARCHITECTURE
We present an architecture supporting the proposed schemes.

Fig. 7 depicts the architecture of our Pattern Match-
ing Machine. It consists of four bit-Automaton Engines
(bAEs), an Arbiter, an LTT, and a CLT.

A bit-Automaton Engine (Fig. 8) consists of a State Tran-
sition Table (STT), a Next State Selector, and an Output
State Selector. Every week (or day), our in-house pattern
compiler generates four footprints (of four bit-DFA) from
a new pattern set. Then, each footprint is uploaded to the
STT (Fig. 8), the Start State Register (Fig. 9), and the Low-
est Non-Output State Register (Fig. 10) in each bAE. The
compiler also generates footprints for the LTT and CLT.

After the uploading process, the machine begins running
processes. In the Next State Selector (Fig. 9), the value in

bAE3input

lsb_cur_st_out
is_output_st

[7
:6

]

2 a

a

in
sp

ec
te

d
in

pu
t

A
N
D

AND

N
O

T

L
T

T
 e

n
ab

le

enable
search_input

match_pattern_label
match_found

m
at

ch
_p

at
te

rn
_l

ab
el

8 d

O
R

m
at

ch
_f

ou
nd

1

0

[5
:4

]
[3

:2
]

[1
:0

]

d
d

m
u
xmatch_

pattern
_label en

ab
le

ad
dr

es
s

LTT

Arbiter

AND

Pattern Matching Machine

bAE2

bAE1input

lsb_cur_st_out
is_output_st

bAE0input

lsb_cur_st_out
is_output_st

2

2

2

a

a

a

input

lsb_cur_st_out
is_output_st

=

C
L

T
 e

n
ab

le

CLT

Figure 7: Pattern Matching Machine. The blue lines show
the paths of the Arbiter mechanism. And the red lines show
the paths of declaring a match, and a match pattern label.
(a = �log2(NOutSt,Max)�, and d = �log2(K)�)

the start state register is the start state label. Fig. 3 shows
examples of the start states of the bit-DFA 3, 2, 1 and 0 are
2, 3, 4 and 4, respectively. Note that a start state label may
not be ‘0’ after relabeling. The start state label is loaded
into the current state register in order to point the current
address of the STT. The data at the address is the four
possible next state labels that will be loaded into the next
state register. Every cycle, each inspected input byte is split
to four 2-bits. The mux selects a next state label (from the
next state register) based on this 2-bit value. The selected
next state label is inputted into the current state register.
Then, the next round continues until the machine receives
the last byte of the inspected input stream. A new running
process starts again by loading the start state label from the
start state register to the current state register.

current_st
next_st_data
current_st_ address

next_st_data
 input 4c

c

c c

2

[(a-1):0]

c

current_st

a

is_output_st
1

lsb_cur_st_out

bit-Automaton Engine

State
Transition

Table
Memory

Output State
Detector

Next State
Selector

a
c

Figure 8: bit-Automaton Engine (While NSt is the amount
of states, a = �log2(NOutSt,Max)�, and c = �log2(NSt)�.)

The Output State Detector (Fig. 10) distinguishes output
states from non-output states by using the comparator. The
detector result will be used by the arbiter (Fig. 7). The state
relabeling assigns all output states with lower number than

856

non-output states. For example, in the bit-DFA 1 (Fig. 3),
output state labels are 0, 1 and 2; non-output ones are 3,
4 and 5. That is, any state that is less than 3 is an out-
put state. So, the value in this Lowest Non-Output State
Register is 3.

current_st

ne
xt

_s
t_

da
ta

in
pu

t

c

2

Current State Reg.

c

c c

4c
Next State Register

11 10

c

Start State Reg.

Input Reg.

01 00

c c

mux

Next State Selector

Figure 9: Next State Selector

<

cc

1

Lowest Non-
Output State
Label Reg.

cu
rr

en
t_

st

is_output_st

Output State
Detector

Figure 10: Out-
put State Detec-
tor

7. EXPERIMENTAL EVALUATION
We compare memory usages of our method against previ-

ous works in Table 4. The memory sizes are acquired from
our pattern compiler. The compiler gives the sizes based
on models of Tan-Sherwood (T-L) [10], Piyachon-Luo (P-L)
[7], and our method by using Snort’s pattern set of Apr’04
and Sept’07. While the previous works use bit-vectors, we
use LTT and CLT instead. Our method shows significant
improvement over both works. Especially on Snort’07, both
P-L and T-S methods are too expensive to implement in
on-chip memory while our method requires only 1382.4 KB.
Our method uses the memory of the STT less than others
because their methods have less shared states. That is be-
cause our method has only one set while the others have
hundreds of subsets. And, this is the practical proofs about
shared state phenomenon (Section 3). The total memory us-
age of our LTT, CAM and the lookup table is also less than
the memory usage of bit-vectors.

bit- Lkup Total
Snort STT Vect LTT Tb CAM Mem

Apr T-S 750.8 333.7 1084.5
2004 P-L 750.8 14.1 764.9

ours 313.9 0.97 1.40 5.7 321.9
Sept T-S 6455.0 2582.0 9037.1
2007 P-L 6455.0 45.7 6500.8

ours 1349.6 3.20 5.74 23.8 1382.4

Table 4: Memory (KB) Comparison of Tan-Sherwood’s (T-
S), Piyachon-Luo’s (P-L), and our method. (STT = State
Transition Table)

8. RELATED WORK
There are recently research works on pattern matching.

Artan et al proposed a multi-signature detection using pre-
fix Bloom Filters [2]. While we do not partition a pattern set
into many subsets to exploit shared state phenomena, Bec-
chi et al [3] proposed complex algorithms to merge states.
Sourdis et al [9] proposed building non-deterministic finite
automata (NFA) using logic structures in FPGA rather than
memory based DFA. There are some implementation using
network processor [6, 5], and some papers using the bit-DFA
method [4, 6, 7, 10, 11]

Piyachon et al [7] proposed a state relabeling scheme to
eliminate zero bit-vectors, and cluster output state labels in
one group. Our state relabeling algorithms (Section 4) not
only cluster output state labels in one group, but also make
sure that every common output state (which matches the
same pattern) has the same state label.

9. CONCLUSION
In this paper, we have addressed the problems of the bit-

DFA method that it has faced since it is introduced in 2005.
We proposed using Label Translation Table and CAM-based
Lookup Table methods to tackle the problems. The proposed
schemes reduces the usage by up to 85%, compared against
the previous works by [7, 11]. At the same time, the amount
of processing elements required is reduced from thousands to
four. We present the architecture that realizes our proposed
methods. The architecture suits for both ASIC and FPGA
implementation as well as multi-core system. In the near
future, we plan to apply our proposed schemes for regular
expression based pattern matching.

10. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

[2] N. S. Artan and H. J. Chao. Multi-packet Signature
Detection using Prefix Bloom Filters. In IEEE
GLOBECOM, November 2005.

[3] M. Becchi and S. Cadambi. Memory-Efficient Regular
Expression Search Using State Merging. In IEEE
INFOCOM, 2007.

[4] H-J Jung, Z. K. Baker, and V. K. Prasanna.
Performance of FPGA Implementation of Bit-split
Architecture for Intrusion Detection Systems. In RAW
at IEEE IPDPS, April 2006.

[5] J. Ni, C. Lin, Z. Chen, and P. Ungsunan1. A Fast
Multi-pattern Matching Algorithm for Deep Packet
Inspection on a Network Processor. In International
Conference on Parallel Processing, 2007.

[6] P. Piyachon and Y. Luo. Efficient memory utilization
on network processors for deep packet inspection. In
ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, December
2006.

[7] Piti Piyachon and Yan Luo. Compact State Machine
for High Performance Pattern Matching. In
ACM/IEEE Design Automation Conference, June
2007.

[8] Snort. http://www.snort.org/, 2003.

[9] I. Sourdis, J. Bispo, J. M.P. Cardoso, and
S. Vassiliadis. Regular Expression Matching in
Reconfigurable Hardware. In Journal on VLSI and
Signal Processing, October 2007.

[10] L. Tan and T. Sherwood. A High Throughput String
Matching Architecture for Intrusion Detection and
Prevention. In IEEE/ACM International Symposium
on Computer Architecture, 2005.

[11] L. Tan and T. Sherwood. Bit-Split String-Matching
Engines for Intrusion Detection and Prevention. In
ACM Transactions on Architecture and Code
Optimization (TACO), March 2006.

857

